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Background



Issues on Speech Recognition

e Speech recognition requires large memory capacity

e Large capacity is proportional to high computational power and
time in training and inference, especially RNNs

e Itis ideal to have ASR run on low-end devices, such as

smartphone



Research Questions

e Can smaller models perform better than larger models?
e How to compress model without any performance loss?
And speedup training and inference to save the

computation cost?
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Low-Rank Matrix Factorization

A large matrix can be decomposed into two smaller matrices, where the

rank of the matrices is smaller than the dimension of the original matrix.

Computation advantages:

- Produce compact and dense matrices
- Reducing flops from m x n — (m + n)r

- Compressing the model size m x n — (m + n)r




Non-negative Matrix Factorization

NMF algorithms aim at finding a rank r approximation of the form.

W=U V,

mXn mXr rXn

minimize ||[W — UV]|[%.
UV

where W and U are non-negative matrices of dimensions m x r and r x n,

respectively.
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Model Compression

In-Training

- Reduce the training time and
memory cost
- The model is trained to learn

compact representations

Post-Training

Large model training may have
bottlenecks in time and speed
Useful for pre-trained models
An approximation of the original

model




In-Training Factorized LSTM (Kuchaiev and Ginsburg, 2017)

The model accelerates the

Softmax Layer softmaxtayer ~ /  \_ = Softmaxlayer

training of LSTM. Apply matrix & § 0
s Lot b o (ra=wrvazes) G:LSTM )
factorization by design. e FLSTM - .
f f f f
T2=W2*T1+b G-LSTM
i ST T1W1'd FLSTM [T1=W1'd1+b1][T2=W2'd2+b2]
{ { 0 0
The model improves the speed of N - — b —
a) CAT b) CAT c) CAT

training and inference with a

small performance loss.

Kuchaiev, Oleksii and Ginsburg, Boris, Factorization tricks for Istm networks, ICLR Workshop, 2017.



Post-Training Factorized LSTM (Winata, et al. 2019)

A comprehensive comparison of

post-training methods on LSTM

on language model and

downstream NLP tasks. [
vl | Ul

Low-Rank Matrix Factorization vl | v
11

generally achieves better than ©

Xi

pruning.

Winata, G.l., Madotto, A., Shin, J., Barezi, E.J. and Fung, P., 2019. On the effectiveness of low-rank matrix factorization for
Istm model compression. PACLIC, Hakodate, Japan
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End-to-End Speech Recognition

There are three main end-to-end sequence-to-sequence ASR

architectures:

e RNN-based models with attention (Chan, et al 2016)

e Transformer-based model, a fully-attentional feed-forward
architecture (Dong, et al 2018)

e Hybrid Attention-CTC (Kim, et al 2016; Hori, et al 2017)

Chan, W., Jaitly, N., Le, Q. and Vinyals, O., 2016, March. Listen, attend and spell: A neural network for large vocabulary conversational
speech recognition. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 4960-4964). IEEE.
Dong, L., Xu, S. and Xu, B., 2018, April. Speech-transformer: a no-recurrence sequence-to-sequence model for speech recognition. In 2018
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5884-5888). IEEE.




RNN with Attention Model (Chan, et al 2016)

The encoder processes the audio input and the decoder generates the
transcription.

Encoder

?
!

Decoder
r



Transformer Model (Dong, et al 2018)

Remove the recurrence and apply attention to speed up the training
and inference

Encoder h <EOS>

Self-Attention

*
Enc-Dec-Attention

t t ¢ ¢
Masked Self-Attention

A B
f i S h

Decoder
r

f i S
d 4
}

Feature Extractor




Joint CTC-Attention Model (Kim, et al 2016; Hori, et al 2017)

Joint train with multiple predictions
objectives.

Attention
Decoder

BIiLSTM Encoder

Feature Extractor

Hori, T., Watanabe, S., Zhang, Y. and Chan, W., 2017. Advances
in Joint CTC-Attention based End-to-End Speech Recognition

with a Deep CNN Encoder and RNN-LM. | ‘

Kim, S., Hori, T. and Watanabe, S., 2017, March. Joint v

CTC-attention based end-to-end speech recognition using

multi-task learning. In 2017 IEEE international conference on “ m W *
acoustics, speech and signal processing (ICASSP) (pp. 17

4835-4839). IEEE.
r




Low-Rank Transformer
A lightweight and efficient transformer




Low Rank Transformer (LRT)

e A factorized transformer-based model architecture
e Replacement large high-rank matrices with low-rank matrices to

eliminate the computational bottlenecks.

Obijective
Predict graphemes given audio inputs




Model Architecture

Predictions

Input Encoder: VGG Encoder (Grapheme)
ComponentS: Linear

S
e |Low-Rank Multi-Head Attention (LRMHA) LRFF

e Low-Rank Feed Forward Network (LRFF) %N LRMH? XN
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Linear Encoder-Decoder (LED) Unit

Each m x n matrix is approximated by the multiplication of the

linear encoder unit and a linear decoder unit.

gxn

If r << {m,n}: ‘

- Less parameters compared to linear layer

q X
- Better generalization due to the bottleneck layer /E\

r

- Faster training with less flops

A

gXxXm



Low Rank Feed Forward (LRFF)

e [wo LED units
e Residual connection

e Layer normalization

g(x) = LayerNorm(max (0, zE1 D) E; Dy + 1),

)

"

Layer Norm

7

A

LED

i 7\
residual
connection




Low Rank Multi Head Attention (LRMHA)

e Utilize LED units

o Faster Q, K, V projection
residual
o Attention regularization connection
Q KT [ Concatenate ]
Attention(Q, K, V) = Softmax ( V), 1
Vdj readh | UJ
head 2
hd; = Attention(QEiQDzQ, KEZKD;K’ VEzVDZV), head 1 [ Scaled Dot-Product Attentio‘?
f(Q,K,V) = Concat(hy,--- ,hg)E°D® + Q, : [ :
[[ LED ]ff o [ Leo
il il il
v K Q



Low Rank Multi Head Attention (LRMHA)

e Utilize LED units

o Faster Q, K, V projection

o Attention regularization

e Residual connection [

Concatenate

)

o To avoid gradient issues

i

i N\
residual
connection

headh [

head2 L

e Layer Normalization

head 1 [ Scaled Dot-Product Attention
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Experimental Setup



Datasets

AiShell-1

e A multi-accent Mandarin Chinese speech dataset.

e Consists of 150 hours, 10 hours, and 5 hours of training,
validation, and testing, respectively.

HKUST

e A conversational telephone Chinese speech recognition dataset.

e Consists of 152 hours, 4.2 hours, and 5 hours of training,
validation, and testing, respectively.




Baseline

Transformer-based model Dataset Model Name # Param
3 different model size Transformer (Small) =7.8M
o Small AiShell-1 | Transformer (Medium) ~11.5M

o Medium
o Large Transformer (Large) =22M
Transformer (Small) ~8.7TM

Different model size per
dataset due to different

embedding size Transformer (Large) =~25.1M

HKUST @ Transformer (Medium) =12.7TM



Training Phase

We train all characters in the corpus, including <PAD>,<S0OS>, and

<EOS>. The model consists of 2 encoder layers and 4 decoder layers.

The uncompressed Transformer (Large) has a dim.

iInner

of 2048, dim
of 512, and dim___ of 512. We select the same parameters as the LRT

model with r= 100, r= 75 and r= 50.

model




Inference Phase

We generate the predictions using a beam-search decoding, we take

a= 1, y= 0.1, and a beam size of 8.

P(Y) = aPirans(Y|X) + v/ we(Y),

We evaluate our model using a single GeForce GTX 1080Ti GPU and
three Intel Xeon E5-2620 v4 CPU cores. wc(Y) is the word count to

avoid generating very short/long sentences




Results and Analysis



Results on AiShell-1 Dataset

Model Params CER
LRT model outperforms all ,
Hybrid approach
baseline models with the same HMM-DNN [12] B} 8.5%
number of parameters. End-to-end approach
Attention Model [13] - 23.2%
+ RNNLM [13] - 22.0%

: CTC [14] ~11.7M  19.43%
LRT achieves better performance Framewise RNN [[d] ~17.1M 10.38%

with around 60% compression rate ACS+RENLMILI])| =l46M 189%

. Transformer (large) 25.1M 13.49%

com pared to baseline TranSformer Transformer (medium) 12.7M 14.47%
(L arg e) mo d el Transformer (small) 8. 7M 15.66%
LRT (r = 100) 12.7M  13.09%

LRT (r = 75) 10.7M 13.23%

LRT (r = 50) 8.7M 13.60%




Results on HKUST Dataset

Model Params

CER

LRT mOdel Outperforms a" Hybrid approach

. : DNN-hybrid [12]
baseline models with the same LSTM-hybrid (with pertarb) [12]

35.9%
33.5%

number of parameters. TDNN-hybrid, lattice-free MMI
(with perturb.) [12]

28.2%

End-to-end approach

. Attention Model [12] -
LRT achieves better performance &S, M

I 0 1 MTL + joint dec. (one-pass) [12] ~9.6M
with around 60% compression rate NN M Gty (] 16 1M

37.8%
34.8%
33.9%
32.1%

compared to baseline Transformer  Transformer (targe) XM 2921%
Transformer (medium) 11.5M 29.73%
(La rg e) mOdel Transformer (small) 7.8M 31.30%
LRT (r = 100) 11.5M  28.95%
LRT (r = 75) 9.7M 29.08%
LRT (r = 50) 7.8M 30.74%




Memory and Time Efficiency

Our LRT models gain inference time speed-up by up to 1.35x in the
GPU and 1.23x in the CPU, compared to the uncompressed

Transformer (large) baseline model.

dataset r ACER compress. speed-up | X|

GPU CPU only

AiShell-1 base 0 0 1 1 23.08
100  0.40% 49.40% 1.17x 1.15x 23.15
75 0.26% 57.37% 1.23x 1.16x 23.17
50 -1.10% 65.34% 1.30x 1.23x 23.19

HKUST base 0 0 1 1 22.43
100 0.26% 47.72% 1.21x 1.14x 22.32
75 0.13% 55.90% 1.26x 1.15x 292.15
50  -1.53% 64.54% 1.35x 1.22x 22.49




LRT Training Convergence

LRT model is more stable to train
and convergences faster in just
around 15 epochs.

LRT model achieves Ilower
training & validation loss
compared to the baseline model
with  the same number of
parameters

training loss

validation loss
N

LRT(r=50)
—— LRT(r=100)
Transformer{small)
~=-= Transformer(medium)

—— LRT(r=150)

—— LRT(r=100)
Transformer (small)

-~~~ Transformer(medium)

T
10

T
20
epoch

T
30

T
40




Conclusion

35



Let’s answer our questions

e (Can smaller models perform better than larger models?

Yes, it is! With the better approach, smaller models can not

only performs better but also faster than larger models!



Let’s answer our questions

e Can smaller models perform better than larger models?

Yes, it is! With the better approach, smaller models can not

only performs better but also faster than larger models!

e How to compress model without any performance loss? And
speedup training and inference to save the computation

cost?

In-training compression, LRT!




Conclusion

LRT is a memory-efficient with faster-computational neural

architecture that eliminate the memory and time bottlenecks.

LRT can generalize better on test set while also reducing the

parameters by 50%.

LRT is faster to converge compared to normal transformer

model.



Thank you

All questions are welcome




