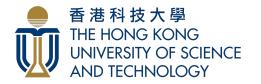
Attention-Informed Mixed-Language Training for Zero-shot Cross-lingual Task-oriented Dialogue Systems

Zihan Liu, Genta Indra Winata, Zhaojiang Lin, Peng Xu, Pascale Fung



Background

• Supervised neural-based approaches have shown the

effectiveness for natural language processing.

Background

- Supervised neural-based approaches have shown the effectiveness for natural language processing.
- However, they heavily rely on large amounts of training data, which makes them not scalable to low-resource languages.

Background

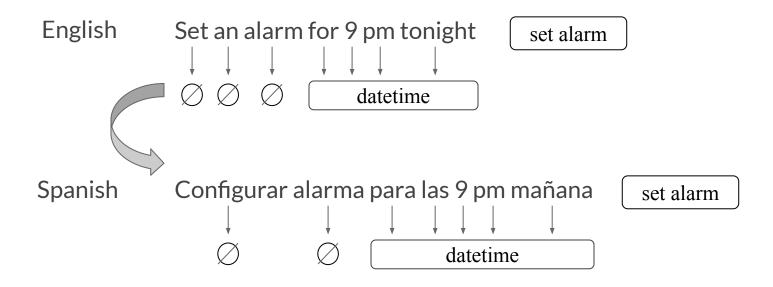
- Supervised neural-based approaches have shown the effectiveness for natural language processing.
- However, they heavily rely on large amounts of training data, which makes them not scalable to low-resource languages.
- A straightforward idea is to adapt the model from the high-resource language into the low-resource languages.

Cross-lingual Task-oriented Dialogue Systems

• Dialogue State Tracking (DST)

Cross-lingual Task-oriented Dialogue Systems

• Natural Language Understanding (NLU)



Straightforward solutions

- 1. Translate training set from source language to target language
- 2. Translate test samples

Straightforward solutions

- 1. Translate training set from source language to target language
- 2. Translate test samples

Problems

- 1. We need large amounts of resources to build machine translation systems.
- 2. Machine translation systems perform badly if the source language and target languages are unrelated languages (e.g., English and Chinese).

Cross-lingual Adaptation

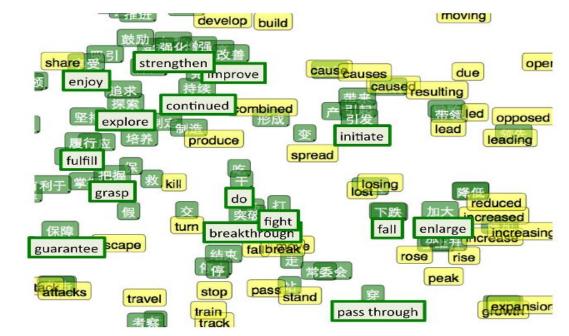
Leverage the inter-connections among languages

English Systems

Cross-lingual Adaptation

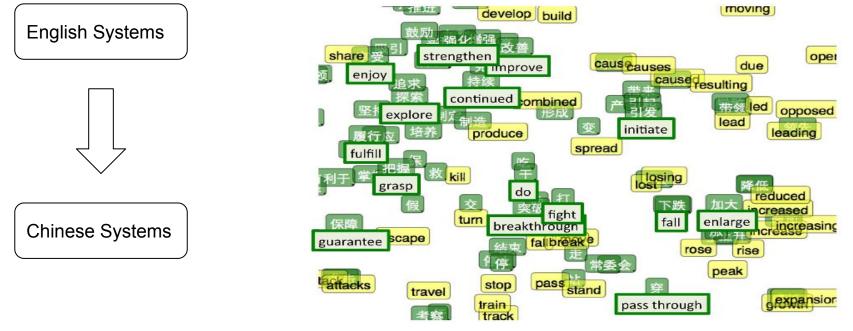
English Systems

Leverage the inter-connections among languages



Cross-lingual Adaptation

Leverage the inter-connections among languages



Related work

• Chen et al (2018)^[1] utilized large amounts of parallel data or bilingual

dictionary to build zero-shot cross-lingual DST systems.

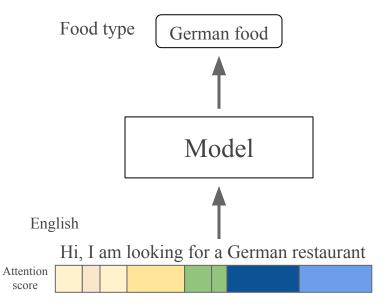
• Schuster et al (2019)^[2] also leveraged extensive parallel data to build

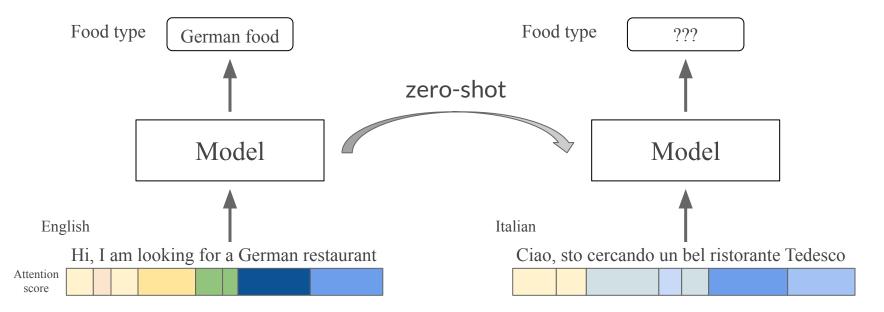
zero-shot cross-lingual NLU systems.

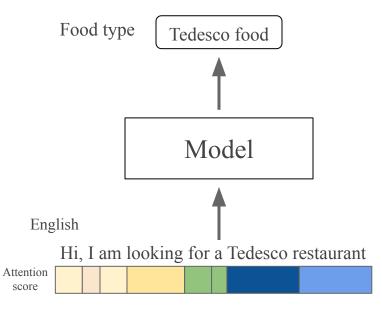
• Collecting bilingual resources is expensive and time-consuming, our work

only utilizes very few word pairs as bilingual resources.

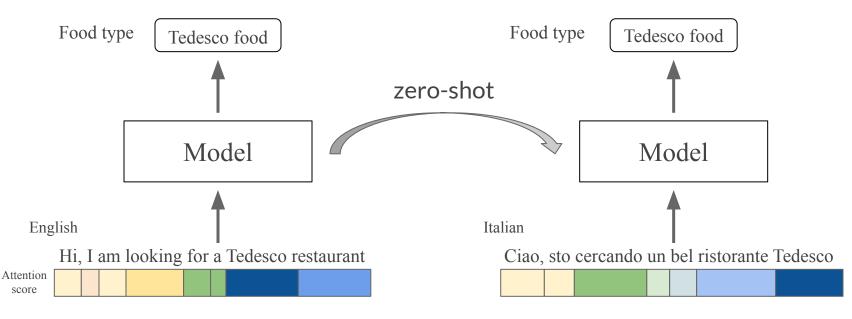
XL-NBT: A Cross-lingual Neural Belief Tracking Framework
Cross-Lingual Transfer Learning for Multilingual Task Oriented Dialog





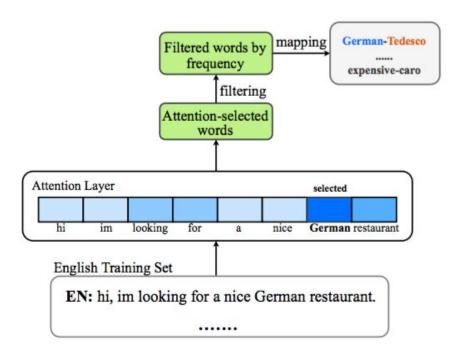


(replace German with Tedesco)

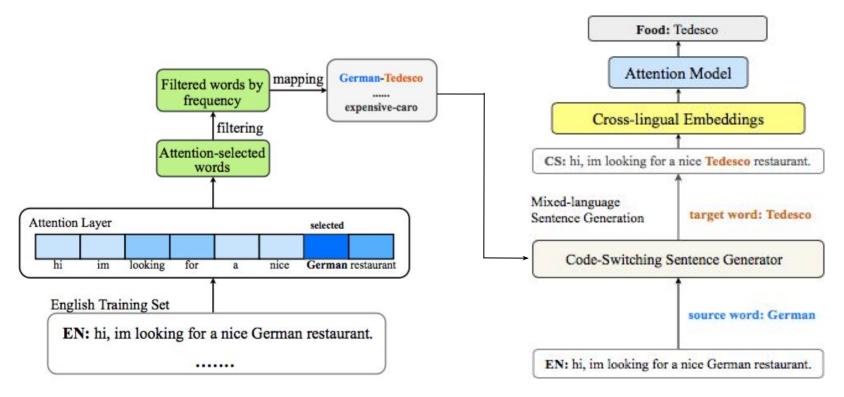


(replace German with Tedesco)

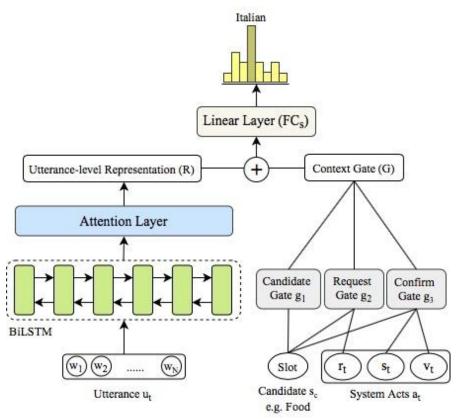
Attention Layer to select keywords



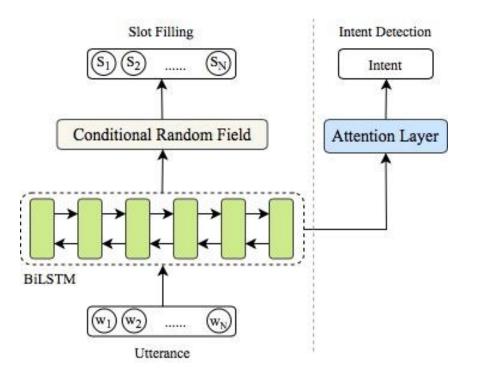
Mixed-Language Training



Dialogue State Tracking (DST)



Natural Language Understanding (NLU)



Zero-shot Results in DST Task

	German										
Model	slot acc.			jo	int goal a	cc.	request acc.				
	BASE	MLT _O	MLT _A	BASE	MLT _O	MLTA	BASE	MLT _O	MLTA		
MUSE	60.69	68.58	71.38	21.57	30.61	36.51	74.22	80.11	82.99		
XLM (MLM)*	52.21	66.26	68.25	14.09	29.45	31.29	75.15	78.48	80.22		
+ Transformer	53.81	65.81	68.55	13.97	30.87	32.98	76.83	78.95	81.34		
XLM (MLM+TLM)*	58.04	65.39	66.25	16.34	29.22	29.83	75.73	78.86	79.12		
+ Transformer	56.52	66.81	68.88	16.59	31.76	33.12	78.56	81.59	82.96		
Multi. BERT*	57.61	67.49	69.48	14.95	30.69	32.23	75.31	83.66	86.27		
+ Transformer	57.43	68.33	70.77	15.67	31.28	34.36	78.59	84.37	86.97		
Ontology Matching [†]		24			-			21			
Translate Train [†]	41				-		42				
Bilingual Dictionary [‡]		51.74			28.07			72.54			
Bilingual Corpus [‡]	55				30.84		68.32				
Supervised Training		85.78			78.89		84.02				
	Italian										
Model	slot acc.			jo	int goal a	cc.	request acc.				
	BASE	MLT _O	MLT _A	BASE	MLT _O	MLT _A	BASE	MLT _O	MLTA		
MUSE	60.59	73.55	76.88	20.66	36.88	39.35	79.09	82.24	84.23		
Multi. BERT*	53.34	65.49	69.48	12.88	26.45	31.41	76.12	84.58	85.18		
+ Transformer	54.56	66.87	71.45	12.63	28.59	33.35	77.34	82.93	84.96		
Ontology Matching [†]	23				-		21				
Translate Train [†]	48			·			51				
Bilingual Dictionary [‡]	73			39.01			77.09				
Bilingual Corpus [‡]	72			41.23			81.23				
Supervised Training	88.92			80.22			91.05				

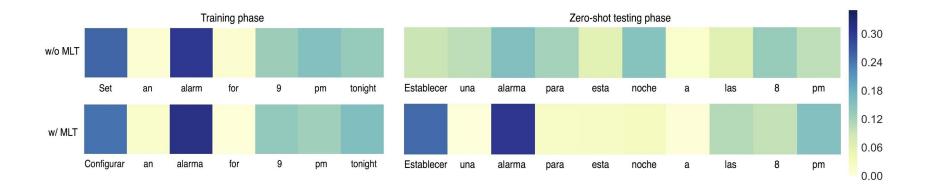
Zero-shot results for the target languages on Multilingual WOZ 2.0. MLT_A denotes our approach (attention-informed MLT), which utilizes the same number of word pairs (90 word pairs) as MLT_O (MLT based on ontology).

Zero-shot Results in NLU Task

	Spanish						Thai					
Model	Intent acc.			Slot F1			Intent acc.			Slot F1		
	BASE	MLT _H	MLT _A	BASE	MLT_H	MLT _A	BASE	MLT _H	MLT _A	BASE	MLT _H	MLTA
RCSLS	37.67	77.59	87.05	22.23	59.12	57.75	35.12	68.63	81.44	8.72	29.44	30.42
XLM (MLM)	60.8	75.11	83.95	38.55	63.29	66.11	37.59	46.34	65.31	8.12	19.03	20.43
+ Transformer	62.33	82.83	85.63	41.67	66.53	67.95	40.31	57.27	68.55	11.45	26.02	27.45
XLM (TLM+MLM)	62.48	81.34	84.91	42.27	65.71	66.48	31.62	50.34	65.25	7.91	19.22	19.88
+ Transformer	65.32	83.79	87.48	44.39	66.03	68.55	37.53	68.62	72.59	12.84	26.56	27.98
Multi. BERT	73.73	77.51	86.54	51.73	74.51	74.43	28.15	52.25	70.57	10.62	24.41	28.47
+ Transformer	74.15	82.9	87.88	54.28	74.88	73.89	26.54	53.84	73.46	11.34	26.05	27.12
Zero-shot SLU [†]		46.64		1	15.41			35.64			12.11	
Multi. CoVe		53.34			22.50			66.35			32.52	
Multi. CoVe w/ auto		53.89			19.25			70.70			35.62	
Translate Train		85.39			72.87			95.85			55.43	

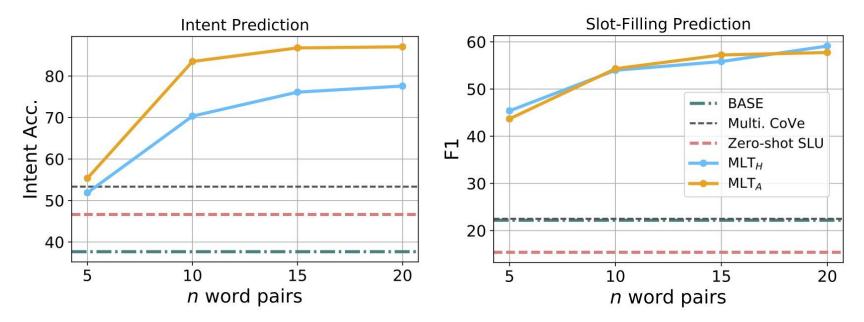
Zero-shot results on multilingual NLU dataset (Schuster et al. 2019), and the number of word pairs on both MLT_{H} and MLT_{A} is 20.

Visualization



Attentions on words in both training and testing phases.

Zero-shot Results in NLU Task



The dynamics of the NLU task: intent and slot-filling results with different numbers of word pairs on Spanish test data.

Conclusion

- We propose attention-informed mixed-language training for cross-lingual task-oriented dialogue systems.
- Our approach utilizes very few task-related parallel word pairs base on the attention scores.
- The task-related words have a generalization ability to other words that have similar semantics in target languages.

Thanks!

Check our code

https://github.com/zliucr/mixed-language-training